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Abstract We consider polygonal Markov fields originally introduced by Arak in 4th
USSR–Japan Symposium on Probability Theory and Mathematical Statistics, Abstracts of
Communications, 1982; Arak and Surgailis in Probab. Theory Relat. Fields 80:543–579,
1989. Our attention is focused on fields with nodes of order two, which can be regarded as
continuum ensembles of non-intersecting contours in the plane, sharing a number of salient
features with the two-dimensional Ising model. The purpose of this paper is to establish
an explicit stochastic representation for the higher-order correlation functions of polygonal
Markov fields in their consistency regime. The representation is given in terms of the so-
called crop functionals (defined by a Möbius-type formula) of polygonal webs which arise
in a graphical construction dual to that giving rise to polygonal fields. The proof of our rep-
resentation formula goes by constructing a martingale interpolation between the correlation
functions of polygonal fields and crop functionals of polygonal webs.

Keywords Arak-Surgailis polygonal Markov fields · Higher order correlation functions ·
Polygonal web · Duality between polygonal fields and polygonal webs · Graphical
construction · Two-dimensional Ising model

1 Introduction

Polygonal Markov fields, originally introduced by Arak and Surgailis [1, 2] and further stud-
ied by Arak, Clifford and Surgailis [3, 4, 18] are random ensembles of non-intersecting
polygonal contours in the plane interacting by hard-core exclusions and exhibiting two-
dimensional germ-Markov property [2], with a variety of additional possible terms entering
the Hamiltonian, including length and area elements (ibidem). The polygonal fields with
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Fig. 1 A typical realisation of a
polygonal Markov field with
V-shaped nodes

V-shaped nodes (no nodes of order higher than two) as considered in this paper, see Fig. 1
for a typical realisation, share a number of essential features with the two-dimensional Ising
model, prominent examples including the presence of an Ising-like phase transition [13, 14]
as well as low temperature phase separation and Wulff droplet creation [15]. For these rea-
sons, the polygonal Markov fields are sometimes regarded as continuum counterparts of the
Ising model in the plane (as well as of the Potts model if higher order nodes are admit-
ted). Remarkably, in many aspects the polygonal fields are exactly tractable, especially in
the so-called consistent regime falling into the supercritical temperature region. In partic-
ular, at the consistency point one knows the exact value of the partition function, first and
second order characteristics of the field [2–4]. Further, a lot is known about the higher or-
der correlations as well, including certain exact formulae [16] and necessary and sufficient
conditions for factorisation of edge correlations (ibidem) as well as an exponential mixing
statement (asymptotic factorisation) for edge correlations (ibidem). A striking feature of
polygonal Markov fields is that they admit a number of particularly convenient algorithmic
constructions—graphical representations [2–4, 10, 14–16] which are in fact the main tool
for establishing of the afore-mentioned results. The geometric ingredient in these consider-
ations is so predominant that often no supplementary calculations are needed, which stands
in a strong contrast to the classical Ising model.

The rich class of graphical constructions developed for polygonal fields have also found
their applications in Bayesian image processing where they are used to generate image seg-
mentations, see [6, 8–10, 17]. Experimenting with various black-white and grayscale images
we already obtained promising results, further algorithms are a subject of our ongoing re-
search in progress.

The purpose of the present paper is to complement the existing exact results for con-
sistent polygonal Markov fields by establishing in Theorem 2 an explicit stochastic repre-
sentation for their higher order edge correlations in terms of expectations of the so-called
crop functionals of polygonal webs. The polygonal web arises as the union of a collection
of trajectories of continuous time critical branching polygonal random walks in the plane,
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interacting by a bridge-creating mechanism attempting to clasp random trees generated by
branching walks into a web by establishing linear bridges between trees. As mentioned
above, the polygonal fields admit a graphical construction whose full details are given in
Sect. 3 below. The dynamics of this construction can be interpreted as a (quite untypical)
interacting particle system evolving in time and, speaking in this vein, the polygonal web
arises in a graphical construction, given in Sect. 4 below, which can be regarded as dual to
that for polygonal fields. The nature of this duality consists, roughly speaking, in the fact
that the dynamic representation of polygonal webs exhibits features strongly reminiscent of
those of the polygonal field construction under inverted time flow direction. To some extent
this can be perceived as an analogy to the classical duality for interacting particle systems,
see e.g. Sect. III.4 in [11], although this is not a close analogy, especially that here we deal
with entire histories of the considered interacting particle systems (whose trajectories trace
the polygonal fields and webs) rather than just with their instantaneous configurations. The
proof of our duality representation for edge correlations goes by constructing a martingale
interpolating between edge correlation functions and crop functionals of the corresponding
polygonal webs. More precisely, we prove in Sect. 6 that there exists a real-valued edge
correlation process (�s)s∈[0,1] enjoying the following properties

• �0 coincides a.s. with the suitably defined edge correlation function φ(·) as discussed in
detail in Sect. 5.

• �1 coincides a.s. with the crop functional of the corresponding polygonal web,
crop(W[·]), as defined in detail in Sect. 4.

• (�s)s∈[0,1] is a martingale as shown in the crucial Lemma 4, which from the technical
viewpoint can be regarded as the principal result of this paper.

Putting these together allows us to establish our main Theorem 2 stating that φ(·) =
E crop(W[·]), that is to say that the edge correlation function coincides with the expectation
of the crop functional of the corresponding polygonal web.

Apart from their intrinsic theoretical interest our results have one further important aim.
Namely they provide effective means to evaluate correlation functions and conditional cor-
relations of polygonal fields. In the continuum set-up this can be done using Monte-Carlo
techniques based on Theorem 2. However, in our recent work [17] we have developed a
hybrid semi-discrete version of polygonal field theory strongly oriented for Bayesian image
analysis. We intend to specialise the duality formula in Theorem 2 to that set-up and to ob-
tain in this way an efficient computer algorithm for exact calculation of the field correlations
and conditional correlations, without resorting to approximate Monte-Carlo techniques. As
a result we will construct an exact Bayesian inference engine on the space of polygonal
images. Whereas the theory of Bayesian exact inference engines for belief networks has be-
come very well developed by now, see e.g. [7] and the references therein, these are usually
designed for generic nets and do not exploit the particular geometric features as present in
our polygonal setting. Further details of this work in progress fall beyond the scope of this
article and will be published in a separate paper.

The rest of this paper is organised as follows. In Sect. 2 below we present the concept of
a non-homogeneous polygonal field as introduced in [16]. Next, in Sect. 3 we discuss the
generalised graphical construction of such fields as developed ibidem. In the further Sect. 4
we develop a dual graphical construction and define the polygonal web. In the next Sect. 5
we define edge correlation functions of polygonal fields and state our main representation
Theorem 2 as briefly discussed above. The proof of this theorem is given in Sect. 6, where a
number of auxiliary constructions are also developed and many auxiliary results established.
Finally, to the last Sect. 7 we delegate the proof of a technical existence result for edge
correlations.
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2 Non-homogeneous Polygonal Markov Fields in the Plane and Their Consistent
Regime

For an open bounded convex set D define the family �D of admissible polygonal configu-
rations on D by taking all the finite planar graphs γ in D ∪ ∂D, with straight-line segments
as edges, such that

• the edges of γ do not intersect,
• all the interior vertices of γ (lying in D) are of degree 2,

• all the boundary vertices of γ (lying in ∂D) are of degree 1,

• no two edges of γ are colinear.

In other words, γ consists of a finite number of disjoint polygons, possibly nested and
chopped off by the boundary. Further, for a finite collection (l) = (li)

n
i=1 of straight lines

intersecting D we write �D(l) to denote the family of admissible configurations γ with the
additional properties that γ ⊆ ⋃n

i=1 li and γ ∩ li is a single interval of a strictly positive
length for each li , i = 1, . . . , n, possibly with some isolated points added.

For a Borel subset of A ⊆ R
2 by [[A]] we shall denote the family of all straight lines

hitting A so that in particular [[R2]] stands for the collection of all straight lines in R
2. We

shall also write [[A]] for the family of all linear segments in R
2 hitting A. Further, let μ be

the standard isometry-invariant Haar-Lebesgue measure on the space [[R2]] of straight lines
in R

2. Recall that one possible construction of μ goes by identifying a straight line l with
the pair (φ,ρ) ∈ [0,π) × R, where (ρ sin(φ), ρ cos(φ)) is the vector orthogonal to l, and
joining it to the origin, and then by endowing the parameter space [0,π) × R with the usual
Lebesgue measure. Note that the above parametrisation of [[R2]] with [0,π) × R endows
[[R2]] with a natural metric, topology and Borel σ -field which will be used in this paper.
Next, consider a non-negative Borel measure M on [[R2]] admitting a locally bounded
density m(·) with respect to μ. Below, the measure M will be interpreted as the activity
measure on [[R2]]. Let 
M be the Poisson line process on [[R2]] with intensity measure
M and write 
M

D for its restriction to the domain D. Further, define the Hamiltonian LM :
�D → R+ given by

LM(γ ) :=
∑

e∈Edges(γ )

M([[e]]), γ ∈ �D. (1)

We note that the energy function LM should be regarded as an anisotropic environment-
specific version of the length functional. Indeed, interpreting the activity M(dl) of a line
l hitting an edge e ∈ Edges(γ ) as the likelihood of a new edge being created along l inter-
secting and hence fracturing the edge e in γ, we observe that, roughly speaking, the value
of M([[e]]) determines how likely the edge e is to be fractured by another edge present in
the environment. In other words, LM(γ ) determines how difficult it is to maintain the whole
graph γ ∈ �D without fractures in the environment M—note that due to the anisotropy of
the environment there may be graphs of a higher (lower) total edge length than γ and yet of
lower (higher) energy and thus easier (more difficult) to maintain and to keep unfractured
due to the lack (presence) of high activity lines likely to fracture their edges.

Following [16], with the above notation, for β ∈ R further referred to as the inverse
temperature (from mathematical viewpoint also the unphysical negative values of inverse
temperatures are admissible), we define the polygonal field AM;β

D in D with activity mea-
sure M to be the Gibbsian modification of the process induced on �D by 
M

D , with the
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Hamiltonian LM at inverse temperature β, that is to say

P(AM;β
D ∈ G) :=

E
∑

γ∈�D(
M
D

)∩G exp(−βLM(γ ))

E
∑

γ∈�D(
M
D

) exp(−βLM(γ ))
(2)

for all sets G ⊆ �D Borel measurable with respect to, say, the usual Hausdorff distance
topology. Note that this definition can be rewritten as

P(AM;β
D ∈ dγ ) ∝ exp(−βLM(γ ))

∏

e∈Edges(γ )

M(dl[e]), γ ∈ �D, (3)

where l[e] is the straight line extending e. In other words, the probability of having
AM;β

D ∈ dγ is proportional to the Boltzmann factor exp(−βLM(γ )) times the product of
edge activities M(dl[e]), e ∈ Edges(γ ). Observe also that this construction should be re-
garded as a specific version of the general polygonal model given in (2.11) of [2]. The
finiteness of the partition function

Z M;β
D := E

∑

γ∈�D(
M
D

)

exp(−βLM(γ )) < ∞ (4)

for all β ∈ R is not difficult to verify and has been established in [16], see (32) there.
In this paper we shall focus on polygonal fields in their consistent regime corresponding

to β = 1. As shown in Sect. 3 in [16], this particular choice of temperature parameter places
us in the context of a non-homogeneous version of Arak-Surgailis [2] construction for the
consistent polygonal fields, see Sect. 4 there. This ensures striking properties of the field.
First of these, the consistency, states that for each open bounded and convex D ⊆ D′ ⊂ R

2

the field AM
D := AM;1

D coincides in law with AM
D′ := AM;1

D′ ∩ D, thus allowing for a direct
construction of the infinite volume process (thermodynamic limit) AM := AM;1 on the
whole R

2 such that AM
D = AM ∩ D. The infinite volume process AM takes its values in

the space � := �R2 of whole-plane admissible configurations, with obvious meaning of this
notation. Further, the explicit formula for the partition function Z M

D is known for convex
D, see Theorem 4.1 in [2] for the homogeneous case and Theorem 1 in [16] for the general
non-homogeneous set-up. We state this formula in (6). Moreover, one-dimensional linear
sections of the field are fully characterised in distribution, see ibidem and Theorem 2 in [16].
Finally, the polygonal fields AM

D enjoy the two-dimensional Markov property stating that
the conditional behaviour of the field inside a smooth closed curve depends on the outside
configuration only through arbitrarily small neighbourhoods of the curve or, equivalently,
through the trace of the external configuration on the curve, consisting of intersection points
and directions. This property is a direct consequence of the Gibbsian definition (2, 3) of the
field and, unlike the previous properties, it holds for all inverse temperatures β ∈ R rather
than just for β = 1. We will not discuss this property in the present paper and we refer the
reader to the original work of Arak and Surgailis [2] for further details.

3 Generalised Dynamic Representation for Consistent Fields

The present section is meant to recall the generalised dynamic representation for consistent
polygonal fields as developed in Sect. 4 of [16], which will serve as a crucial tool in our
further considerations. The name generalised representation comes from the fact that it
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generalises the original construction of such fields introduced by Arak and Surgailis in [2].
In the sequel we will often omit the qualifier generalised for the sake of terminological
brevity. To describe the representation, fix the convex field domain D and let (Dt)t∈[0,1] be
a time-indexed increasing family of compact convex subsets of D̄, eventually covering the
entire D̄ and interpreted as a growing window gradually revealing increasing portions of
the polygonal field under construction in the course of the time flow. In other words, under
this interpretation, the portion of a polygonal field in a bounded open convex domain D

uncovered by time t is precisely its intersection with Dt. To put it in formal terms, consider
(Dt)t∈[0,1] satisfying

(D1) (Dt)t∈[0,1] is a strictly increasing family of compact convex subsets of D̄ = D ∪ ∂D.

(D2) D0 is a single point x in D̄ = D ∪ ∂D.

(D3) D1 coincides with D̄.

(D4) Dt is continuous in the usual Hausdorff metric on compacts.

Note that the extra fifth condition imposed on Dt in Sect. 4 of [16] is automatically satisfied
here due to the absolute continuity M � μ and thus is not mentioned here. Clearly, under
these conditions, for M-almost each l ∈ [[D]] the intersection l ∩ Dτl consists of precisely
one point A(l), where τl = inf{t ∈ [0,1], Dt ∩ l �= ∅}. The point A(l) will be referred to as
the anchor point for l, this induces the anchor mapping A : [[D]] → D defined M-almost
everywhere. Consider now the following dynamics in time t ∈ [0,1], with all updates given
by the rules below performed independently of each other.

(GE:Initialise) Begin with empty field at time 0,

(GE:Unfold) Between critical moments listed below, during the time interval [t, t +dt] the
unfolding field edges in Dt reaching ∂Dt extend straight to Dt+dt \ Dt,

(GE:BoundaryHit) When a field edge hits the boundary ∂D, it stops growing in this di-
rection (note that M-almost everywhere the intersection of a line with ∂D consists of at
most two points),

(GE:Collision) When two unfolding field edges intersect in Dt+dt \ Dt, they are not ex-
tended any further beyond the intersection point (stop growing in the direction marked by
the intersection point),

(GE:DirectionalUpdate) A field edge extending along l ∈ [[Dt ]] updates its direction dur-
ing [t, t + dt] and starts unfolding along l′ ∈ [[l[t,t+dt]]], extending away from the anchor
point A(l′), with probability M(dl′), where l[t,t+dt] := l ∩ (Dt+dt \ Dt). Directional up-
dates of this type are all performed independently,

(GE:LineBirth) Whenever the anchor point A(l) of a line l falls into Dt+dt \ Dt, the line
l is born at the time t at its anchor point with probability M(dl), whereupon it begins
extending in both directions with the growth of Dt (recall that l is M-almost always tan-
gential to ∂Dt here),

(GE:VertexBirth) For each intersection point of lines l1 and l2 falling into Dt+dt \ Dt, the
pair of field lines l1 and l2 is born at l1 ∩ l2 with probability M(dl1)M(dl2), whereupon
both lines begin unfolding in the directions away from their respective anchor points A(l1)

and A(l2).

Observe that the evolution rule (GE:VertexBirth) means that pairs of lines are born at birth
sites distributed according to a Poisson point process in D with intensity measure given by
the intersection measure 〈〈M〉〉 of M defined as follows

〈〈M〉〉(A) := 1

2
M × M({(l1, l2), l1 ∩ l2 ⊂ A}). (5)
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Fig. 2 The generalised dynamic representation for polygonal fields

The importance of the intersection measure lies in the fact that

Z M;1
D = exp(〈〈M〉〉(D)) (6)

as shown in Theorem 1 in [16]. The following result stating that the polygonal field resulting
from the above construction actually coincides with AM

D has been established in [16], see
Theorem 3 there.

Theorem 1 The random contour ensemble resulting from the above construction (GE) co-
incides in law with AM

D .

A typical realisation of the generalised dynamic representation is depicted in Fig. 2.

4 Polygonal Web

Having defined the non-homogeneous polygonal fields and presented their graphical con-
struction, we pass now to another object central to this paper, which we name the polygonal
web. Whereas the details of the connection between the critical polygonal web and the cor-
responding consistent polygonal field are to be established in the subsequent Sect. 5, here
we emphasise that, in a sense, the polygonal web constitutes the dual object to the polyg-
onal field sharing the same activity measure, and this duality is going to be reflected in the
construction of the polygonal web. Roughly speaking, the polygonal web arises as the union
of critical branching polygonal random walks, interacting by an additional bridge-creating
mechanism, clasping the branched polygonal trees into a web.
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4.1 Constructing the Polygonal Web

Consider an open bounded and convex domain D and let (Dt)t∈[0,1] be a growing family of
compact subsets of D̄ satisfying the usual conditions (D1–4) as in Sect. 3. Further, assume
a collection (l̄, x̄) = (li , xi)

k
i=1 is given where xi are points in D̄ whereas li are straight

lines with xi ∈ li , i = 1, . . . , k. Moreover, to avoid uninteresting pathologies we require
that no three different lines li , i = 1, . . . , k, intersect at one point. Each such pair (li , xi)

will be called an edge marker because li can be interpreted as a directional indicator for a
linear segment/edge passing through xi, see Sect. 5 below where this interpretation is further
developed and exploited. The entire collection (l̄, x̄) will be referred to as the edge marker
configuration. The polygonal web W[(l̄, x̄)] := W M

D [(l̄, x̄)] generated by (l̄, x̄) in D̄, with
activity measure M, is the union of polygonal trees in D̄ arising as the final state w1 of
the following graphical construction process ws evolving for s ∈ [0,1], where all random
updates listed are performed independently.

(W:Start) At the time s = 0 we let w0 consist of zero-length edges (edge germs) at xi ,
i = 1, . . . , k, directed along the respective li ’s.

(W:GrowInwards) Between the critical moments listed below, during the time interval
[s, s + ds] all edges of ws reaching the boundary ∂D1−s extend straight to D1−s \ D1−s−ds

along their respective directional lines. The edges (edge germs) not yet touched by the
boundary of the shrinking domain D1−s (and hence contained in the interior of D1−s )
remain intact and do not evolve until eventually hit by the boundary at some later time
(unless they get frozen prior to that, see below, in which case they never start evolving).
Below, we call edges reaching the current boundary ∂D1−s active and we say that edges
(edge germs) not yet hit by the boundary are inactive. Note that the intersection point
of a web edge with the current boundary ∂D1−s can be interpreted as its instantaneous
growth-tip and so will it be called in the sequel. Observe that inactive edges do not have
growth-tips.

(W:BranchAndTurn) During the time interval [s, s + ds] an active web edge reaching the
boundary ∂D1−s and extending along l ∈ [[D1−s]] yields a new offspring edge starting at
l[s,s+ds] := l ∩ D1−s \ D1−s−ds and directed along l′ ∈ [[l[s,s+ds]]] with probability M(dl′).
Both the original and offspring edges go on evolving according to the usual rules. The
branching updates are performed independently for all active web edges.

(W:ForcedBranchAndTurn) If during the time interval [s, s + ds] an active web edge ex-
tending along some l ∈ [[D1−s]] and reaching the boundary ∂D1−s intersects the directional
line l′ of some other non-frozen web edge in ws ∩ D1−s , be it active or inactive, and there
is no web edge along l′ reaching l ∩ ∂D1−s and created in a prior stage of the evolution,
then a new offspring edge is created at l ∩ ∂D1−s directed along l′ and both the original
and offspring edges go on evolving according to the usual rules. Note that we only con-
sider directional lines l′ of edges hitting the domain D1−s—the edges present in D̄ \ D1−s

but terminated before the time s (see below for edge termination events) are not taken into
account. Thus, the forced branching occurs if the growth-tip of an edge hits the current
directional line of another (non-frozen) edge currently present in the system. Whenever a
forced branching occurs, the resulting offspring edge is called a forced edge whereas the
edge whose directional line l′ gave rise to the branching is referred to as the corresponding
forcing edge. Observe that a pair of forced and forcing edges will meet and coalesce into a
single edge at further stages of the construction unless one of the edges terminates prior to
that.
Note that if the forcing edge is active, it resides at the boundary of the domain Ds and
yields a single forced edge on the opposite side of the domain. On the other hand, an
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inactive forcing edge (edge germ) located in the interior of Ds may give rise to (at most)
two forced edges, one on each side of the domain.

(W:Terminate) During the time interval [s, s +ds] an active web edge reaching the bound-
ary ∂D1−s and extending along l ∈ [[D1−s]] terminates (stops evolving) with probability
M([[l[s,s+ds]]]) where l[s,s+ds] := l ∩ D1−s \ D1−s−ds .

(W:StopIfSeparated) Whenever at some time moment s ∈ [0,1] a web edge (or edge
germ) e in ws ∩ D1−s , be it active or inactive, has the property that l[e] ∩ conv([ws \
e] ∩ ∂D1−s) = ∅ (that is to say the directional line l[e] of the web edge e does not hit the
convex hull generated by the current growth-tips of the remaining non-terminated active
edges and non-frozen germination points of the remaining inactive edges, in which case
we say that e separates from ws at the time s), then e terminates and stops evolving at this
point. Note that in case of an inactive edge germ e to terminate means to remain frozen in
inactive state and never to activate even when hit by the boundary at the later stages of the
evolution.

A careful reader might ask at this moment why in the above construction we do not consider
the case when at some time s a web edge becomes tangential to the domain D1−s . The
answer is that, with probability one, such cases do not occur in the course of the construction
because an edge to become tangential to the boundary of the domain separates from the web
prior to that and thus gets terminated by an application of (W:StopIfSeparated) rule.

The construction of the polygonal web as presented above admits a natural intuitive
description—the edge germs initiating the process emit critical branching polygonal ran-
dom walks directed by the activity measure M and unfolding inward the domain D which
can be regarded as dual to the dynamic representation in Sect. 3 where the growth was
directed outwards. The branching is critical because the binary branching and termination
intensities coincide in (W:BranchAndTurn) and (W:Terminate). The role of the additional
(W:ForcedBranchAndTurn) rule is to ensure the possibility of bridging the gaps between
two separated co-linear parts of the same segment present on two opposite sides of the win-
dow D1−s , thus clasping the polygonal trees into a web. Finally, as may be seen in the
sequel, the (W:StopIfSeparated) rule reflects the structural knowledge on independence of
edge covering events in polygonal fields as established in [16], and as such it is not indis-
pensable in its full form for the theory developed below to be valid and may be replaced by
various weaker variants, see Remark 1.

It is useful to note that, regarded as a polygonal graph, the polygonal web contains T-
shaped nodes (branching points), I-shaped nodes (edge terminal points) and X-shaped nodes
(edge intersection points) but no V-shaped nodes.

Example In Fig. 3 we present a typical realisation of a polygonal web. For clarity, we take
D̄ = D1 to be a rectangle there, D0 to be a point on its left side and we assume that Ds

unfolds as follows: during some initial period [0, ε] the window Ds grows along the left side
of D̄, covering it completely by the time ε. Thereupon, Ds starts growing as a rectangular
window in D̄ sharing its left side. This goes by letting a vertical line sweep from left to
right in D̄ and making it the right side for Ds. The upper and lower sides of Ds are then the
respective segments of the upper and lower sides of D̄. Recall that in the construction of the
polygonal web the time flows backwards and the window Ds shrinks from D1 to D0 which
corresponds to the inverse right-to-left vertical line sweep in our Fig. 3.

4.2 Crop Functional

To establish a direct link between the polygonal web and polygonal fields we define now
the crop functional of the polygonal web, further denoted as crop(W[(l̄, x̄)]). To this end,
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Fig. 3 The construction of polygonal web. At the point A a forced branching occurs to form a bridge to x3.

Next, at B a non-forced branching takes place. The bridge Ax3 successfully reaches x3 but thereafter the
evolution of this branch stops at C due to separation. The branch starting at x4 terminates immediately at
its birth, again due to separation. Next, at D the branch terminates by (W:Terminate). At E two branches
cross but nothing happens. Further, at F a forced branching occurs in an attempt to bridge towards x5. Al-
though passing through G and even going a bit further, this attempt is unsuccessful as terminating at H by
(W:Terminate) and thus leaving an incomplete bridge. The branch emitted from x5 stops at I by separation.
The remaining two branches stop at J and K by separation. The branches at x6, x7 and x8 terminate immedi-
ately upon birth, by separation. The short segments at x4, x6, x7 and x8 are not actual edges of the polygonal
web and their purpose is only to indicate the respective directions l4, l6, l7 and l8

we identify the polygonal web W[(l̄, x̄)] = W M
D [(l̄, x̄)] with the collection of branches

connecting the initial edge germ locations xi , i = 1, . . . , k to the edge termination points
y1, . . . , ym resulting from (W:Terminate,StopIfSeparated) rules or arising as meeting
points where forcer-forced pairs of co-linear web edges unfolding in opposite directions
merge into linear segments. To avoid nuisance technicalities below we formally interpret
each meeting point of a forcer-forced pair as two distinct points, one terminating the forc-
ing branch, the second terminating the forced branch. Clearly, m ≥ k since each initial edge
germ xi emits at least one branch and each branch eventually terminates. Keeping (l̄, x̄)

fixed, we shall index the branches constituting W[(l̄, x̄)] by their terminal points, writing
branch[yj ] for the branch terminating at yj —the inambiguity of this indexation is ensured
by the above convention on meeting points of forcer-forced pairs. Along each branch we
have a natural chronological ordering from the root xi , i ∈ {1, . . . , k} to the endpoint yj ,
j ∈ {1, . . . ,m}. For a collection of branches branch[y], y ∈ Y , Y ⊆ {y1, . . . , ym}, we con-
sider the induced polygonal crop graph CropGraph[Y] obtained as follows.

(Crop:Grow) Follow the growth of all branches in {branch[y], y ∈ Y} starting from their
roots and unfolding towards their respective endpoints during the time interval [0,1] as in
the course of the polygonal web dynamics (W).

(Crop:StopOnCollision) Whenever in the course of their growth two branches meet, they
both stop growing at this point.



762 T. Schreiber

Thus, the crop graph is a subgraph of W[(l̄, x̄)] containing T-shaped, I-shaped and V-shaped
nodes but not X-shaped nodes. This is because the crop graph arises by (recursively) cutting
off the parts of branches past their intersections with other branches present in the inducing
collection. There are two ways in which two branches can meet in the above construction—
they can either intersect coming from two non-colinear directions and giving rise to a V-
shaped node in CropGraph[Y], or meet coming from opposite co-linear directions yield-
ing a linear segment rather than a graph node. Note that two distinct branches sharing a
common sub-branch and thus coinciding during initial growth phase are not considered to
meet or intersect! On the other hand, if several distinct branches coinciding during an ini-
tial growth phase intersect another branch(es) during this phase, the growth-interrupting
(Crop:StopOnCollision) rule applies to all these branches simultaneously.

It is easily seen that two different collections of terminal points can yield identical crop
graphs because some branch turning points can be cut off due to collisions in the course
of the (Crop) dynamics. It is clear though that for each instance of a crop graph arising in
(Crop) dynamics there exists a unique collection of terminal points with the property that no
branch turning points occur past the cut-off points. This unique collection is called minimal
for its crop graph, or just minimal for short if no ambiguity arises.

To proceed, we say that a collection Y ⊆ {y1, . . . , ym} of branch-determining endpoints
is complete iff each initial germ location is the root of some branch[y], y ∈ Y. Clearly, the
cardinality of such a complete collection cannot fall below k. Further, we say that the crop
graph CropGraph[Y] of a complete endpoint collection Y is normal iff it contains no forced
edges which fail to eventually meet and merge with their co-linear forcing edges. Note that
this condition can be violated by either having a forced edge without its forcer present in
the graph or due to a death or directional update along either a forcing or a forced edge.
Whereas the death of either edge in an forcer-forced pair does necessarily lead to the lack
of normality, a directional update does so only if there is no other branch in the collection
along which the considered forcer-forced pair could extend further past the turning point.
A graph which is not normal is called abnormal. Thus, roughly speaking, an abnormal graph
is a graph containing the forced part of an incomplete bridge. Write

ι(Y) :=
{

1, if Y ⊆ {y1, . . . , ym} is complete, minimal and CropGraph[Y] is normal,
0, otherwise.

(7)
With this notation, we define the crop functional

crop(W[(l̄, x̄)]) :=
∑

Y⊆{y1,...,ym}
(−1)card(Y)−kι(Y). (8)

The expression (8) has the aesthetic advantage of defining the crop functional in a form
reminiscent of the classical inverse Möbius transform, with the summation performed over
all subsets of {y1, . . . , ym}, see e.g. Sect. 2.6 in [12]. To exploit this feature define

ι̂(Y) :=
{

1, if CropGraph[Y] is normal,
0, otherwise,

that is to say ι̂ is the indicator of crop graph normality, without the extra completeness and
minimality requirements. Given a crop graph � = CropGraph[Y] for some complete and
minimal Y� ⊆ {y1, . . . , ym}, we let B[y], y ∈ Y�, be the set of all yj , j = 1, . . . ,m, such
that branch[yj ] contains the entire subbranch branch[y] ∩�. Then, for any Y ⊆ {y1, . . . , ym}
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such that CropGraph[Y] = CropGraph[Y�] we have ι̂(Y) = ι(Y�) and, moreover, Y de-
composes into the disjoint union of non-empty Yy = Y ∩ B[y], y ∈ Y�. We also have
card(Y) = card(Y�) + ∑

y∈Y�
[card(Yy) − 1]. Consequently, using Newton’s binomial for-

mula,
∑

Y, CropGraph[Y]=CropGraph[Y�]
(−1)card(Y)−k ι̂(Y)

= (−1)card(Y�)−kι(Y�)
∏

y∈Y�

∑

∅�=Yy⊆B[y]
(−1)card(Yy )−1 = (−1)card(Y�)−kι(Y�)

∏

y∈Y�

1

= (−1)card(Y�)−kι(Y�).

Thus, (8) can be alternatively rewritten as

crop(W[(l̄, x̄)]) =
∑

Y⊆{y1,...,ym}, Y complete

(−1)card(Y)−k ι̂(Y). (9)

Further, we put T [xi] := {yj ∈ {y1, . . . , ym}, root(branch[yj ]) = xi}, i = 1, . . . , k, and
write, applying Newton’s binomial formula,

∑

Y⊆{y1,...,ym}, Y complete

(−1)card(Y)−k =
k∏

i=1

∑

∅�=Yi⊆T [xi ]
(−1)card(Yi )−1 =

k∏

i=1

1 = 1.

Combining this with (9) we conclude that

crop(W[(l̄, x̄)]) = 1 −
∑

Y⊆{y1,...,ym}, Y complete

(−1)card(Y)−k[ι̂(Y) − 1] (10)

and hence the crop equals one for polygonal webs whose all complete branch subcollections
yield normal crop graphs, whereas the deviations of the crop functional from the standard
value one are due to crop graph abnormalities, which will be further exploited in the sequel.

A natural alternative way of defining the crop functional involves summation over crop
subgraphs of W[(l̄, x̄)], that is to say over all possible different graphs arising in the (Crop)
dynamics above, in which case (8) becomes

crop(W[(l̄, x̄)]) =
∑

� is a normal crop graph in W[(l̄,x̄)]
(−1) number of branchings in � (11)

since the number of branchings in � = CropGraph[Y], Y minimal, is easily seen to coincide
with card(Y) − k. Note that by a branching we understand here a point in the crop graph
from which two different branches outgo, thus in other words a branching corresponds to a
T-shaped (but not V-shaped) node of the crop graph.

Example In Figs. 4, 5 and 6 below we visualise the concepts of this subsection for the
example polygonal web shown in Fig. 3. Note that the branch-determining endpoints there
are {y1, . . . , y11} := {x3,C, x4,D,H, I, x6, J,K,x7, x8}. Observe also that the point x3 has
been included as terminating the degenerate forcing branch x3x3 of the bridge x3x3.

To get some insight into the structure of the family of complete and minimal endpoint
collections yielding normal crop graphs, we note first that among the possible endpoints
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Fig. 4 The crop graph for {x3,C, x4,D, I, x6, J,K,x7, x8}. This is a complete and minimal collection and
the corresponding graph is normal. To make the collection non-minimal we could augment it with H

Fig. 5 The crop graph for {x3,C, x4,D, I, x6, J, x7, x8}. This is a complete and minimal collection and the
corresponding graph is normal

{x3,C, x4,D,H, I, J,K,x7, x8} points C,x4, I, x6, x7, x8 always have to be picked for com-
pleteness. Next, H cannot be picked because it always produces an incomplete bridge (un-
less the collection is non-minimal). However, this means in turn that also J has to be picked
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Fig. 6 The crop graph for {x3,C, x4,D,H, I, x6, J, x7, x8}. This is a complete and minimal collection but
the corresponding graph is not normal because it contains an incomplete bridge terminating at H

to preserve completeness, because H was its only alternative to include x2 as a branch root.
Moreover, we cannot take D if x3 is not picked, as it would result in a gap along the bridge
Ax3. Furthermore, if neither x3 nor D are taken then K has to be taken to ensure that a
branch outgrows from x1. Otherwise, all choices are permitted, which eventually leaves us
with 5 options for complete and minimal Y giving rise to a normal crop graph:

1. Y = {x3,C, x4,D, I, x6, J,K,x7, x8}, CropGraph(Y) has 2 branchings.
2. Y = {x3,C, x4,D, I, x6, J, x7, x8}, CropGraph(Y) has 1 branching.
3. Y = {x3,C, x4, I, x6, J,K,x7, x8}, CropGraph(Y) has 1 branching.
4. Y = {x3,C, x4, I, x6, J, x7, x8}, CropGraph(Y) has no branchings.
5. Y = {C,x4, I, x6, J,K,x7, x8}, CropGraph(Y) has no branchings.

Using (11) yields now crop(W[(l̄, x̄)] = 1 for the considered collection (li , xi)
8
i=1.

Clearly, calculations of this sort are somewhat tedious when made by hand, but they can
be easily carried out by a computer. As already mentioned in the introduction, the theory
developed in this paper will be used to construct an exact Bayesian inference engine in the
space of polygonal shapes, specialised to the hybrid semi-discrete set-up of [17] with a view
towards image processing applications. This is a subject of our ongoing work in progress
and will be published in a separate paper.

4.3 Interpretation of the Crop Functional

A few words are due at this point to provide an intuitive interpretation of the crop functional
as formally defined in (8). To this end, we begin by mentioning a kid game quite popular in
the happy time of the author’s childhood: given a collection of arrows on a sheet of paper
draw a family of closed curves passing through these arrows, and in case where this can be
done in more than one way resolve the ambiguity by trying to make the resulting picture



766 T. Schreiber

resemble some real-life object. In fact, this and related problems are not just games and find
serious interest in studies on human and computer vision, see [5] and the references therein.
In mathematical terms and specialising to our polygonal set-up, given an edge marker col-
lection (l̄, x̄) = (li , xi)

k
i=1 we ask for admissible polygonal configurations γ ∈ �R2 with the

following properties

• Each edge e of γ contains some edge marker point xi(e) such that l[e] = li(e).

• Each edge marker point xi is contained in some e(i) ∈ Edges(γ ) such that l[e(i)] = li .

Following Sect. 5 of [16] we denote the family of such configurations by �(l̄, x̄) and
write N(l̄, x̄) for the cardinality of �(l̄, x̄), that is to say the number of solutions to the
discussed problem. To proceed, consider first a particularly simple deterministic instance
W 0[(l̄, x̄)] := W 0

D[(l̄, x̄)] of polygonal web generated by (l̄, x̄) not depending on the activ-
ity measure M—define W 0[(l̄, x̄)] to arise in the course of the above (W) dynamics without
non-forced turns/branchings and without termination events, which is a usual situation for
example when xi ’s are very close to each other and are all contained in a domain D with
very small M([[D]]) where applications of (W:TurnAndBranch,Terminate) are very un-
likely. Observe that the notation W 0

D[(l̄, x̄)] comes from the fact that the above construction
of this polygonal web coincides with the (W) dynamics under zero activity measure. Then,
as will be shown in Lemma 2 below,

crop(W 0
D[(l̄, x̄)]) = N(l̄, x̄)

for each bounded convex domain D containing all xi ’s.
At the other extremity lies the typical behaviour of the crop functional of polygonal webs

generated by marker configurations (l̄, x̄) where the distances between all xi ’s are huge and
where all li ’s are pairwise different—due to the criticality of our branching mechanism the
usual situation then is that the web W[(l̄, x̄)] splits into disjoint and distant sub-webs origi-
nating from respective xi ’s and the bridge creating attempts between these sub-webs fail with
overwhelming probability in consequence of (W:Terminate). In these circumstances all
normal crop graphs in W[(l̄, x̄)] are readily seen to be unions of disjoint normal crop graphs
in sub-webs stemming from individual xi ’s and thus, by (11), the value of crop(W[(l̄, x̄)])
factorises into the product of crops of the sub-webs. Using (15) below combined with our
main Theorem 2 and resorting to Remark 1 allows us to conclude easily but not immediately
that the expectations of these individual crops are all 1 and consequently

E crop(W[(l̄, x̄)]) ≈ 1

as well. This fact, not studied in detail here, is intimately related to mixing properties of
polygonal fields (asymptotic factorisation of edge correlations) but this link will not be fol-
lowed any further in this paper because so far we are only able to establish a slow polyno-
mial mixing using a rather technical argument based on polygonal webs, whereas alternative
methods developed in Sect. 7 of [16] allowed us to establish exponential mixing there at least
for rectangular fields.

In remaining situations the crop functional interpolates between the above extremities.

5 Polygonal Web Representation for Edge Correlations

The purpose of this section is to formulate our main result stating that arbitrary order edge
correlation functions of the polygonal field coincide with the expectations of the respective
polygonal web crops.
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Edge Correlations Having introduced the crucial concepts in preceding sections we are
now in a position to define the principal object of our study in this paper, that is to say
the edge-correlation functions for polygonal fields, and to formulate our main results. Due
to the polygonal nature of the considered field the natural object to consider are the edge
correlations

σ M[dl1, x1; . . . ;dlk, xk] := P(∀k
i=1∃e∈Edges(A M) πli (xi) ∈ e, l[e] ∈ dli), (12)

where l1, . . . , lk are straight lines and πli is the orthogonal projection on li . In all cases below
we shall be interested in correlations with xi ∈ li , in which case σ M[dl1, x1; . . . ; dlk, xk]
can be interpreted as the probability element that the polygonal field AM passes through
points xi in the directions determined by the respective lines li , i = 1, . . . , k. For general xi,

not necessarily lying on li , the k-fold correlation σ M[dl1, x1; . . . ;dlk, xk] is the probability
that the polygonal field passes through points πli (xi) in the directions determined by the
respective lines li , i = 1, . . . , k.

Recall from Sect. 4 above that collections (l̄, x̄) = (li , xi)
k
i=1 of lines li and points xi with

xi ∈ li are referred to as edge marker configurations (collections) whereas each pair (li , xi)

belonging to such a collection is called an edge marker. No edge marker can occur twice in
an edge marker collection. An edge along li passing through xi is said to cover the marker
(li , xi). We say that an edge marker collection (l̄, x̄) = (xi, li)

k
i=1 is in general position if the

lines li are pairwise different and xj �∈ li for j �= i, otherwise if li = lj for some i �= j then
the collection is called degenerate and xi, xj are declared coupled by li = lj , finally if xi ∈ lj
for some i �= j with li �= lj then the collection is said to be in singular position. Thus, an
edge marker collection can be simultaneously degenerate and singular. As mentioned above,
if two edge marker lines li = lj in a degenerate configuration coincide, we say that the edge
markers (li , xi) and (lj , xj ) are coupled, sometimes for brevity we just say that xi and xj

are coupled. While allowing both for singularity and degeneracy of marker collections, we
strictly exclude the situations where three or more different marker lines intersect at one
point, in order to avoid unnecessary technical pathologies.

Note that in the singular case where xi ∈ lj for some i �= j but li �= lj it makes sense to
consider one-sided correlations σ M[dl+i , xi;dlj , xj ; . . .] and σ M[dl−i , xi;dlj , xj ; . . .] with
l+i and l−i standing for two half-lines into which li is split by the intersection point {xi} =
li ∩ lj . The definition of such correlations is analogous to (12) the difference being that the
field edge containing xi is required to extend respectively at least in the direction of l+i and
l−i , yet it is also allowed although not required to extend in the opposite direction as well.
Since M � μ, it is easily seen that for a configuration in general position we would have
σ M[dl+i , xi;dlj , xj ; . . .] = σ M[dl−i , xi;dlj , xj ; . . .] = σ M[dli , xi;dlj , xj ; . . .], but this is
no more the case in the considered singular situation, where the respective correlations are
non-trivially affected by the event that an edge along lj may extend from xj down to xi

where it may intersect with another edge along li .

In the sequel we will use the notation �∗[k], ∗ ∈ {g, s, d}, for the respective sets of all
collections (li , xi)

k
i=1 in general, singular and degenerate positions. Further, we put �∗ :=⋃∞

k=1 �∗[k], ∗ ∈ {g, s, d} and �[k] := ⋃
∗∈{g,s,d} �

∗[k] and � := ⋃
∗∈{g,s,d} �[k]. Clearly,

�[k] can be endowed with the natural product topology from ([[R2]] × R
2)×k.

Edge Correlation Functions For a non-degenerate edge marker configuration (l̄, x̄) =
(li , xi)

k
i=1 the (normalised) k-fold edge correlation function φ(l1, x1; . . . ; lk, xk) is defined

by

φ(l1, x1; . . . ; lk, xk) = φM(l1, x1; . . . ; lk, xk) := σ M[dl1, x1; . . . ;dlk, xk]
M(dl1) . . . M(dlk)

. (13)
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More generally, if (l̄, x̄) is a degenerate edge marker configuration, its normalised correla-
tion is given by

φ(l̄, x̄) = σ M[dl1, x1; . . . ;dlk, xk]
∏∗ M(dli)

, (14)

where
∏∗ stands for the product over lines li in which each line is present exactly once,

with repetitions discarded. We also adopt the convention that φ(∅) := 1, where ∅ stands for
empty edge marker configuration. The existence of edge correlation functions is guaranteed
by the following lemma.

Lemma 1 The correlation function φ(l̄, x̄) exists for each edge marker configuration (x̄, l̄)

and is continuous on �g[k]. In particular, φ(·) is locally bounded.

Likewise, we can also consider one-sided versions of the correlation functions, for which
the existence and local boundedness statements of Lemma 1 readily extend. Note that in
general the correlation functions are not continuous at singular configurations in �s[k]—
indeed, if a sequence of configurations in general positions converges to some singular con-
figuration, which implies that some xi asymptotically reaches lj with j �= i, the limit of
the respective correlation functions can be easily seen to coincide with the appropriate one-
sided correlation function for the limit singular configuration, provided the convergence of
xi takes place on one side of lj only, otherwise the limit may fail to exist. The discontinu-
ity may therefore arise because the one-sided correlation functions may differ on different
sides.

By Theorem 4 in [16] it follows that for all (l̄, x̄) ∈ �g[k], k = 1,2, we have

φ(l̄, x̄) = 1. (15)

The same paper gives general conditions for this relation to hold for k > 2. Here we are
interested in the general set-up for k > 2 where it often happens that φ(l̄, x̄) �= 1.

Representation Theorem for Edge Correlation Functions The following theorem is the
main result of this paper.

Theorem 2 For each edge marker collection (l̄, x̄) with x̄ ⊂ D we have

φM(l̄, x̄) = E crop(W M
D [(l̄, x̄)]).

It is useful at this point to compare Theorem 2 with the simple observation that whenever
all xi ’s in (l̄, x̄) belong to a small ball B2(x0, r) for some x0 ∈ R

2 then

φ(l̄, x̄) = N(l̄, x̄)(1 + O(r)), (16)

with N(l̄, x̄) defined as in Sect. 4.3, which readily follows by (2, 3) and the definitions
(13, 14) of edge correlation functions, taking additionally into account the local boundedness
of the density m(·) of the activity measure M with respect to the Haar-Lebesgue measure
μ which ensures that the Boltzmann factors exp(−LM(·)) are 1 + O(r) on B2(x0, r), see
also (12) in [16]. It is interesting to note at this point that, by the consistency of AM, the
same would hold if we defined N(x̄, l̄) to be the cardinality of �(x̄, l̄) ∩ D for any convex
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open D ⊃ x̄ and thus N(x̄, l̄) does not depend on the field domain D as long as D ⊃ x̄ ! To
proceed, observe that under the same conditions our Theorem 2 yields

φ(l̄, x̄) = crop(W 0
Dr [(l̄, x̄)])(1 + O(r)) (17)

with W 0
Dr [(l̄, x̄)] defined as in Sect. 4.3 and where Dr is an r-dependent bounded convex

domain of diameter O(r) containing B2(x0, r). This is because O(r) is the probability that
at least one turning/branching event occurs in the course of the polygonal web generating
dynamics (W) confined to Dr, again in view of the local boundedness of the density m(·). To
proceed we note that both N(l̄, x̄) and crop(W 0

Dr [(l̄, x̄)]) are, by their definitions, invariant
with respect to non-singular affine transforms of (l̄, x̄). Consequently, upon an appropriate
re-scaling we can take r in (16) and (17) arbitrarily small. This way, upon comparing (16)
and (17) we have established

Lemma 2 For each edge marker collection (l̄, x̄) we have

crop(W 0
D[(l̄, x̄)]) = N(l̄, x̄)

for each D ⊃ x̄. In particular, crop(W 0
D[(l̄, x̄)]) does not depend on D ⊃ x̄.

Note at this point that the relation (17) can be further extended to produce a small r

expansion, with the coefficient at rk corresponding to instances of polygonal webs with
exactly k turns/branchings. We do not pursue this topic here though because we are not
aware of any natural geometric interpretations for the higher order terms of this expansion
in the style of Lemma 2.

Relaxing the Stop if Separated Rule As has already been remarked above, in contrast to
the remaining rather strict dynamic rules, the (W:StopIfSeparated) rule can be somewhat
relaxed without affecting the validity of our Theorem 2. This is made more specific in the
remark below.

Remark 1 A direct inspection of the proof of our representation Theorem 2 below shows
that the result stays valid if the (W:StopIfSeparated) rule, requiring the web branch growth
to cease immediately when its tip separates from the remaining ones, get replaced some
other rule where the growth is stopped only on separation but not necessarily immediately
at separation. The only natural constraints are that

• At each time moment in the course of the graphical construction the decision on whether
to stop the growth of a separated branch either depends deterministically on the present
configuration of branches or at least it is independent of the future evolutions of branches
given the current branch configuration.

• Each branch eventually dies before or at the moment s of becoming tangential to the
current domain boundary ∂Ds.

The first condition precludes unwanted dependencies whereas the second one is indispens-
able for the technical correctness of our constructions (the above tangency point is the point
where the time flow direction changes along a branch, and the growth only occurs forward
in time in our constructions).

Note that a particular simple example of a stopping rule satisfying the above conditions
is to kill each branch exactly at the time s when it becomes tangential to the current bound-
ary ∂Ds.



770 T. Schreiber

In fact, an even deeper analysis of our argument below shows that further relaxation of
the considered rule are admissible. We do not discuss these details in this paper though as
they are of no use for our present purposes.

6 Proof of the Representation Theorem 2

The purpose of this section is to prove our main Theorem 2. Our argument splits into several
parts and requires some additional concepts.

Edge Marker Process To proceed towards establishing our representation theorem for
edge correlation functions, we shall introduce a Markovian edge marker process whose
construction can be to some extent regarded as a backwards version of the dynamic rep-
resentation discussed in Sect. 3. Roughly speaking, the dynamic representation involved
an explosion of the field from a single point up to the entire domain D, whereas the edge
marker process represents an evolution back in time and thus an implosion of the marker con-
figuration, eventually to reach one of possible null states. In fact, the edge marker process
will be seen to encode the construction of the polygonal web, see (18) below, providing an
interpolation between the original marker configuration (l̄, x̄) and the full polygonal web
W[(l̄, x̄)], whence the backwards time flow direction. To make all this specific, take the in-
creasing family (Dt)t∈[0,1] of convex compacts satisfying (D1–4) as chosen in Sect. 4. Next,
consider a continuous time branching edge marker process �s := �s;D , s ∈ [0,1], taking
its values in finite families of signed and possibly empty edge marker configurations, with
generic notation

�s = {η(p) : (l̄(p)(s), x̄(p)(s)) = (l
(p)

i (s), x
(p)

i (s))
kp

i=1}m
p=1

with m and kp allowed to depend on the time s and where η(p) ∈ {+1,−1}. As the notation
suggests, the signs η(p) are attributed once and for all to their respective marker configura-
tions and do not evolve in time. In addition, we always require that

(EM:DomainShrink) for each s ∈ [0,1] the marker points x
(p)

i (s) are all contained in the
set D1−s ,

that is to say the domain of the process �s shrinks over time as informally discussed above.
Given the initial state �0 with all marker points contained in D̄ = D1 and, in addition,
assumed not to contain three different edge marker lines meeting at one point, the process
�s is governed by the following Markovian dynamics (EM), clearly preserving the latter
property in view of the absolute continuity M � μ.

(EM:DiscardIfSeparated) If at some time s an edge marker (l
(p)

i (s), x
(p)

i (s)) has the prop-
erty that l

(p)

i (s) does not hit the convex hull

C
(p)

i (s) := conv({x(q)

j (s), q = 1, . . . ,m; j = 1, . . . , kq} \ {x(p)

j (s)})

generated by all the remaining x
(q)

j (s)’s in all marker configurations (l̄(q)(s), x̄(q)(s)), q =
1, . . . ,m, in which case we say that the marker (l

(p)

i (s), x
(p)

i (s)) separates from �s, then
remove the marker (l

(p)

i (s), x
(p)

i (s)) from its configuration (l̄(p)(s), x̄(p)(s)).

If the removal of (l
(p)

i (s), x
(p)

i (s)) makes some other markers separate from �s, the
(EM:DiscardIfSeparated) rule applies for them as well and they are subsequently re-
moved.
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(EM:FoldInwards) Between the critical moments listed below, at each time s ≥ 0 each
edge marker point x

(p)

i (s) lying at the boundary ∂Ds—in which case we say the marker is
in boundary position—moves along its corresponding marker line l

(p)

i (s) so as to always
stay at the boundary of the shrinking domain, that is to say x

(p)

i (s + ds) arises as the
intersection of l

(p)

i (s) with ∂Ds+ds . Note that marker points not lying at the boundary ∂Ds

do not move until they are eventually met by the boundary at some later time.
(EM:DiscardOnCollision) If at some time s two edge marker points x

(p)

i (s) and x
(p)

j (s)

within the same marker collection (l̄(p)(s), x̄(p)(s)) collide (meet) along non-colinear di-
rections l

(p)

i (s) and l
(p)

j (s), the two markers are removed from the configuration.
As a result of the above (EM:DiscardOnCollision) rule some other edge markers may
separate from �s—in such a case the (EM:DiscardIfSeparated) rule applies immediately
and the markers get discarded.

(EM:Kill) In the course of the time interval [s, s + ds], an edge marker (l
(p)

i (s), x
(p)

i (s)) in

boundary position, moving along the segment x
(p)

i [s, s + ds] := x
(p)

i (s)x
(p)

i (s + ds), gets
removed from its configuration (l̄(p)(s), x̄(p)(s)) with probability M([[x(p)

i [s, s + ds]]]).
These updates are performed independently for all different boundary edge markers
throughout all marker configurations constituting the process �s, yet they are performed si-
multaneously for all equal edge markers contained in different configurations, that is to say
if (x

(p)

i (s), l
(p)

i (s)) = (x
(q)

j (s), l
(q)

j (s)) for some p �= q then the kill events during [s, s +ds]
coincide for both these markers. In other words, the killing mechanism is a.s. identical for
all instances of an edge marker present in different configurations constituting �s.

As a result of the above (EM:Kill) rule some other edge markers may separate from �s—
in such a case the (EM:DiscardIfSeparated) rule applies immediately and the markers
get discarded.

(EM:TurnAndBranch) In the course of the time interval [s, s + ds], for each boundary
edge marker (l

(p)

i (s), x
(p)

i (s)) moving along the corresponding segment x
(p)

i [s, s + ds] :=
x

(p)

i (s)x
(p)

i (s + ds), with probability M(dl) for l ∈ [[x(p)

i [s, s + ds]]] a turn-and-branch
update occurs in the direction of l, which results in replacing the original marker configu-
ration (l̄(p), x̄(p)) by three offspring marker configurations in �s, which are:

• η(p) : (l̄(p)(s), x̄(p)(s)) (unmodified offspring),
• η(p) : (l̄(p)(s), x̄(p)(s)) \ {(l(p)

i (s), x
(p)

i (s))} ∪ {(l(p)

i (s + ds) := l, x
(p)

i (s + ds))} (direc-
tional update offspring—the original marker line l

(p)

i (s) turns in the direction of l, that
is to say l

(p)

i (s + ds) := l),
• −η(p) : (l̄(p)(s), x̄(p)(s)) ∪ {(l, x(p)

i (s + ds))} (branched offspring—both the original
marker and its directional update are present).

As in the case of (EM:Kill) above, these updates are performed independently for all differ-
ent boundary edge markers throughout all marker configurations constituting the process
�s, yet they are performed simultaneously for all equal edge markers contained in dif-
ferent configurations, that is to say if (x

(p)

i (s), l
(p)

i (s)) = (x
(q)

j (s), l
(q)

j (s)) for some p �= q

then the turning/branching updates during [s, s + ds] coincide for both these markers. In
other words, the turning/branching mechanism is a.s. identical for all instances of an edge
marker present in different configurations constituting �s.

Whenever the above (EM:TurnAndBranch) update is performed with l ∩ C
(p)

i (s + ds) =
∅, which results in the directionally updated edge marker separating from �s, the rule
(EM:DiscardIfSeparated) applies immediately to the corresponding directional update
and branched offsprings.
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(EM:ForcedTurnAndBranch) If a boundary edge marker point x
(p)

i (s) crosses some edge
marker line l

(p)

j (s), j �= i, l
(p)

j (s) �= l
(p)

i (s), during the time interval [s, s + ds], a forced

turn-and-branch update occurs in the direction of l
(p)

j (s), which results in replacing the
original marker configuration (l̄(p), x̄(p)) by three offspring marker configurations in �s,

which are:

• η(p) : (l̄(p)(s), x̄(p)(s)) (unmodified offspring),
• η(p) : (l̄(p)(s), x̄(p)(s)) \ {(l(p)

i (s), x
(p)

i (s))} ∪ {(l(p)

i (s + ds) := l
(p)

j (s), x
(p)

i (s + ds))} (di-

rectional update offspring—the original marker line l
(p)

i (s) turns in the direction of
l
(p)

j (s), that is to say l
(p)

i (s + ds) := l
(p)

j (s)),

• −η(p) : (l̄(p)(s), x̄(p)(s)) ∪ {(l(p)

j (s), x
(p)

i (s + ds))} (branched offspring—both the origi-
nal marker and its directional update are present).

It should be noted at this point that, unlike in the usual (EM:TurnAndBranch) dis-
cussed above, here (EM:DiscardIfSeparated) has no chance of becoming applicable di-
rectly upon the update because along l

(p)

j (s) there always exists a direction pointing at

C
(p)

i (s + ds), namely that towards x
(p)

j (s + ds). Moreover, observe also that, in effect of

the so-defined (EM:ForcedTurnAndBranch) update, x
(p)

i (s + ds) and x
(p)

j (s + ds) be-
come coupled both in the directional update and branched offsprings.

(EM:UnbreakableCouplings) If at some time s in the course of their evolution two marker
points x

(p)

i (s) and x
(p)

j (s) are coupled in their configuration then whenever they cease to be
so in the original configuration or any of its offspring configurations, the coupling-breaker
configuration is instantly removed from �s. Note that this is equivalent to the rejection of
configurations where

• a coupled edge marker gets killed in a collision (EM:DiscardOnCollision) or in
(EM:Kill),

• a coupled edge marker modifies its direction in directional update offsprings arising in
(EM:TurnAndBranch,ForcedTurnAndBranch).

The unmodified and branched offsprings do not break couplings and neither can a coupling
be broken in (EM:DiscardIfSeparated) because coupled markers are never separated
since they always point at their pair. Note that in contrast to (EM:DiscardIfSeparated)
rule, where we discard individual edge markers, here we remove entire configurations.
If at some time moment a marker point x

(p)

i (s) reaches its coupled x
(p)

j (s), both markers
coalesce and evolve henceforth as one, in particular all coupling restrictions cease to apply.
Such meeting and coalescence may occur at the tangency point of the respective direc-
tional line to the current domain ∂Ds in which case the resulting single marker is instantly
discarded from the system by application of (EM:DiscardIfSeparated).

The above construction of the edge marker process may seem rather bizarre at the first
look, but this is in fact a rather simple object. The moving boundary of the shrinking do-
main Ds drives inwards polygonal branching random walks of constituent edge markers.
The directional updating and branching mechanisms of these walks are determined by the
activity measure M. The directions of the walks are always chosen to point at the convex
hull generated by the remaining marker points in the process. If such a choice becomes
impossible due to edge marker separation, the marker is discarded. Colliding edge markers
are also discarded. One further rule is unbreakability of once established marker couplings,
which is ensured by rejecting coupling-breaker configurations. It is important to note that
with probability 1, in the course of the dynamics all markers eventually
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• either separate and are discarded in (EM:DiscardIfSeparated),
• or disappear in collisions (EM:DiscardOnCollision),
• or are killed in (EM:Kill),
• or finally they have their configurations annihilated due to coupling breaks, as an applica-

tion of (EM:UnbreakableCouplings).

Thus, at time 1 the process �1 consists a.s. of signed empty marker configurations.
Another crucial observation, readily verified by comparing the (EM) and (W) dynamics,

is that, on the event {�0 = {+1 : (l̄, x̄)}}, the union of trajectories traced by the constituent
marker points x

(p)

i (s), s ∈ [0,1], of � coincides with the web W[(l̄, x̄)], that is to say

W M
D [(l̄, x̄)] =

⋃

s∈[0,1]

⋃

(l̄(p)(s),x̄(p)(s))∈�s

⋃

(x
(p)
i

(s),l
(p)
i

(s))∈(l̄(p)(s),x̄(p)(s))

{x(p)

i (s)}. (18)

Moreover, again by the construction, (the history of) each marker configuration present in
�1 bijectively corresponds to a complete, minimal and normal collection of branches of
W[(l̄, x̄)], whereas the complete abnormal branch collections correspond to marker config-
urations rejected in (EM:UnbreakableCouplings) (this latter correspondence also becomes
a bijection as soon as the minimality of branch collections is assumed).

Recall now our assumption made above stating that the killing, directional updating and
branching mechanisms, while independent for different markers, do coincide for equal mark-
ers. This assumption is clearly crucial for (18) above to hold, but could be easily lifted with-
out affecting the validity of a significant part of the theory presented below. In fact, these
mechanisms can also be coupled in any other way as soon as the Markovian property of the
dynamics is preserved. We do not discuss this issue here though as the imposed coupling
seems to be the most natural one and leading to simplest formulations.

Some concern may be raised by the branching nature of the (EM) evolution—a nat-
ural question is whether no cardinality explosions occur for �s. This possibility is easily
excluded though, as stated below.

Lemma 3 For each bounded open convex set D and initial condition �0 there exists
c[D;�0] < +∞ such that

∀s∈[0,1] E card(�s) ≤ c[D;�0].

To see it use first the relation (18) and the discussion following it to conclude that, for
all s ∈ [0,1], the expectation E card(�s) bounded by 2number of branches ofW[(l̄,x̄)], which is the
maximum number of possible branch collections. Now, the expectation of this number is
finite because W[(l̄, x̄)] arises from a (critical) binary branching process evolving during a
finite time interval. Note that the forced branchings do not cause trouble here because they
only allow to extend already existing lines born at time s to (at the furthest) the opposite
side of D1−s , whereas new lines are only born due to the usual critical branching.

Correlation Process Having constructed the edge marker branching process �s, we are
now going to compose it with the correlation function to obtain the edge correlation process
�s , s ∈ [0,1]. We put

�s :=
∑

(l̄(p)(s),x̄(p)(s))∈�s

η(p)(s)φ(l̄(p)(s), x̄(p)(s)), s ∈ [0,1], (19)
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which means defining the correlation process to be the sum of correlation functions for all
marker configurations in �s taken with their corresponding signs. For formal correctness it
is convenient to adopt at this point the convention that whenever at some time s the marker
point x

(p)

i (s) is in a singular position lying on some l
(p)

j (s), j �= i, then the correlation

function φ(l̄(p)(s), x̄(p)(s)) is interpreted as the one-sided correlation function in which the
marker line l

(p)

i (s) is replaced by half-line [l←](p)

i (s) indicating the direction where x
(p)

i (s)

came from just before hitting l
(p)

j (s). In view of (2, 3) and since M � μ, with probability

1 this is equivalent to putting in such case φ(l̄(p)(s), x̄(p)(s)) := limu→s− φ(l̄(p)(u), x̄(p)(u))

for each s where a singularity is reached.
Assume now that �0 = {+1 : (l̄, x̄)} and recall from the discussion following the de-

finition of the (EM) dynamics that by the time 1 the marker process � reaches a ter-
minal state consisting entirely of signed empty marker configurations. In view of (18)
and the discussion following it, each such empty marker configuration has its history en-
coded by some complete normal (minimal) branch collection in W[(l̄, x̄)], whereas com-
plete abnormal (minimal) branch collections correspond to marker configurations rejected
in (EM:UnbreakableCouplings). Moreover, the sign η assigned to each empty marker con-
figuration in �1 can be readily verified, by induction in the number of branchings in the
course of crop graph creation, to be (−1)number of branchings. Observing that for a complete
branch collection, the number of branchings is simply the difference between the number
of branches and number of roots (the latter coinciding with the cardinality of the initial
marker collection (l̄, x̄)) and recalling that φ(∅) = 1 we finally conclude from (19) and (8)
that

�0 = φ(l̄, x̄), �1 = crop(W[(l̄, x̄)]). (20)

Martingale Property of the Correlation Process With the notation introduced above, we
claim that the edge correlation process is actually a martingale.

Lemma 4 The correlation process (�s)s∈[0,1] is a martingale with respect to the filtration
Fs generated by the marker process �s.

In view of the relation (20) Lemma 4 means we have just constructed a martingale
interpolating between (l̄, x̄) and crop(W[(l̄, x̄)]). This immediately implies the assertion
of Theorem 2 upon putting �0 := {+1 : (l̄, x̄)}. Thus, it remains to establish the crucial
Lemma 4.

Proof of Lemma 4 In view of the Markovian nature of the edge marker process �s, to prove
Lemma 4 it is enough to establish the desired martingale property at s = 0. Moreover, for
simplicity we present our argument for the initial value �0 of the marker process consisting
of a single marker configuration (l̄(1)(0), x̄(1)(0)) := (l̄, x̄) = (li , xi)

k
i=1, whence the general

argument for higher cardinality of the initial condition is readily obtained by straightforward
repetition for all configurations in �0. We assume without loss of generality that x1 lies at
the boundary ∂D1, for only boundary markers undergo evolution under (EM) dynamics.
The remaining marker points xi , i = 2, . . . , k may lie both on ∂D1 and in the interior of D1.

Using Lemma 3 in [16] and the definition (13) of correlation functions we see that if the
line l1 does not hit the convex hull conv({x2, . . . , xk}) then

φ(l1, x1; l2, x2; . . . ; lk, xk) = φ(l2, x2; . . . ; lk, xk) (21)
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which justifies the (EM:DiscardIfSeparated) rule. Thus, below with no loss of generality
we constrain ourselves to the case where the (EM:DiscardIfSeparated) rule does not apply
during the period [0, ds] of the (EM) evolution.

To proceed with our argument, we shall use the generalised dynamic representation de-
scribed in Sect. 3, with the same increasing family of convex compacts (Dt)t∈[0,1] as that
used in the construction of the edge marker process. We also recall that D1 = D̄ where D

is the field domain. It should be recalled at this point that the generic time parameter t of
the dynamic representation is related by t = 1 − s to the usual time parameter s of the edge
marker and correlation processes. As already signalled above, the idea below is to relate
the dynamics of the edge marker process with the graphical representation under inverted
(backward) time flow.

If there is another marker point xi , i �= 1, in boundary position with the property that
l1 and li meet in D1 \ D1−ds then, putting i = 2 for notational clarity, by (13) and the
(GE:VertexBirth) dynamic rule we have,

φ(l1, x1; l2, x2; l3, x3; . . . ; lk, xk) = (1 + o(1))φ(l3, x3; . . . ; lk, xk). (22)

Clearly, the above event corresponds to marker point collision under (EM) dynamics and
thus (22) justifies the (EM:DiscardOnCollision) rule. Keeping this in mind, below we only
consider the case where x1 does not collide with other marker points during [0, ds].

To proceed, write the correlation-defining event

E [dl1, x1; . . . ;dlk, xk] := {∀k
i=1∃e∈Edges(A M) xi ∈ e, l[e] ∈ dli}

as the intersection of E [dl1, x1] and E [dl2, x2; . . . ;dlk, xk] where

E [dl1, x1] := {∃e∈Edges(A M) x1 ∈ e, l[e] ∈ dl1}

and

E [dl2, x2; . . . ;dlk, xk] := {∀k
i=2∃e∈Edges(A M) xi ∈ e, l[e] ∈ dli}.

We shall also denote by x0 the intersection point of the marker line l1 with ∂D1−ds . With this
notation and taking into account that AM

D = AM ∩D arises in the dynamic construction with
(Dt)t∈[0,1] as discussed above, we are now in a position to represent E [dl1, x1; . . . ;dlk, xk]
as the union of the following events, disjoint modulo a set of negligible probability, whose
names were chosen to represent what happens if we move along the field edge covering the
marker (l1, x1) under the (EM) dynamics inwards D1 and towards x0.

(E:GoStraight) E [dl2, x2; . . . ;dlk, xk] occurs and an edge e1 along l1 covering both x1 and
x0 is present in the field AM

D , see Fig. 7.
(E:TurnOutwards) E [dl2, x2; . . . ;dlk, xk] occurs, an edge e1 along l1 covering x1 is

present but it does not reach x0, instead it turns at some point x ′ of x1x0 into another field
edge e′ along a line l′ and in the direction consistent with that determined by the growth of
(Dt), that is to say x ′ is the first point of e′ to be revealed by the growing window (Dt).

Note that such an edge e′ can have only infinitesimally small length within D1 = D̄ since
when moving from x ′ in the direction indicated by the growth of (Dt) we almost imme-
diately encounter the boundary ∂D. Thus, we can say that e′ points outside the domain D̄

and away from D1−ds, whence the term outward turn. Often in such situations we shall
also say that e′ extends outwards from x ′ along l′.
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Fig. 7 The event
(E:GoStraight)

Fig. 8 The event
(E:TurnOutwards)

In terms of the dynamic representation the occurrence of (E:TurnOutwards) is equivalent
to the occurrence of a (GE:VertexBirth) vertex birth event at x ′ between dynamic rep-
resentation times 1 − ds and 1, giving rise to the edges e1 along l1 and e′ along l′, see
Fig. 8.

(E:TurnInwards) E [dl2, x2; . . . ;dlk, xk] occurs, an edge e1 along l1 covering x1 is present
but it does not reach x0, instead it turns at some point x ′ of x1x0 into another field edge e′

along a line l′ and in the direction opposite to that determined by the growth of (Dt), that
is to say x ′ is the last point of e′ to be revealed by the growing window (Dt). In contrast
to the above outward turn, here we turn in the opposite inward direction. In terms of the
dynamic representation the occurrence of (E:TurnInwards) is equivalent to the occurrence
of a (GE:DirectionalUpdate) at x ′ where e′ extending along l′ turns into e1 along l1.
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Fig. 9 The event
(E:TurnInwards)

For our considerations below it is convenient at this point to denote by x ′′ the intersection
point of the inwards half-line e′→ (starting at x ′ and determined by e′) and ∂D1−ds . We say
that x ′′ lies on l′ inwards from x ′ in such cases. Clearly, x ′′ ∈ e′ with probability 1 − o(1).

See Fig. 9 for a pictorial representation.

Observe now that, by the dynamic representation,

• For (E:GoStraight) we only consider the case that x1 does not collide with any other
marker point as the converse case has already been handled in (22). In this situation we
have

P(E:GoStraight) = (1 + o(1))

[

(1 − M([[x1x0]]))σ M[dl1, x0;dl2, x2; . . . ;dlk, xk]

−
∫

l′∈[[x1x0]]
σ M[dl′, x ′′;dl1, x0;dl2, x2; . . . ;dlk, xk]

−
∑

lj ∈[[x1x0]], lj �=l1

σ M[dlj , x
′′
j ;dl1, x0;dl2, x2; . . . ;dlk, xk]

]

, (23)

where x ′′ and x ′′
j in the above integrals stand for the respective intersection points of l′ and

lj with ∂D1−ds, by definition lying inwards from {x ′} := l′ ∩x0x1 and {x ′
j } := lj ∩x0x1. To

establish (23) note first that on (E:GoStraight) an edge e1 in the direction of l1 is present
at x0 at the time 1−ds of the dynamic construction and, in the course of the dynamic con-
struction, during the time period [1−ds,1] the edge unfolds along x0x1 eventually reach-
ing x1. Consequently, there can be no (GE:DirectionalUpdate) directional updates along
x0x1 and neither can there be (GE:Collision) collisions with other already existing edges.
However, according to the (GE) dynamics such directional updates are possible along
each line from [[x0x1]], consequently the probability that none of these possible turns
occurs yields the prefactor exp(−M([[x1x0]])) = (1 + o(1))[1 − M([[x1x0]])] whereas
the remaining factor σ M[dl1, x0;dl2, x2; . . . ;dlk, xk] in the first term in the RHS of (23)
is the probability that the marker points x0, x2, . . . , xk are covered by their corresponding
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edges as required. We claim that the resulting product

(1 + o(1))(1 − M([[x1x0]]))σ M[dl1, x0;dl2, x2; . . . ;dlk, xk] (24)

represents the probability that the event E [dl1, x0;dl2, x2; . . . ;dlk, xk] holds and no
(GE:DirectionalUpdate) turns occur along x0x1. To see it we observe that a possible
directional update of this kind would yield, during the period [1 − ds,1] of the graphical
construction, an outward edge e′ of infinitesimal length, almost immediately hitting the
boundary ∂D1. Since for almost all time moments in the (EM) dynamics the distance be-
tween x1 and other marker points xi , i > 1, is strictly positive, during its short evolution
under the graphical construction dynamics the edge e′
– is overwhelmingly unlikely to have its birth event along the infinitesimal segment x0, x1

affected by the occurrence of E [dl1, x0;dl2, x2; . . . ;dlk, xk],
– has only a negligible chance of affecting the occurrence of the considered event

E [dl1, x0;dl2, x2; . . . ;dlk, xk] because, in the course of the graphical construction, e′
is born after x0 and other xi ’s contained in D1−ds get covered by the field and, in addi-
tion, e′ is, with overwhelming probability, too short to reach neighbourhood of any of
the remaining xi ’s contained in D1 \ D1−ds .

This nearly independence justifies taking the above product, as required. Next, we have
to subtract the probability that E [dl1, x0;dl2, x2; . . . ;dlk, xk] occurs and there are no di-
rectional updates (GE:DirectionalUpdate) along x0x1 but a (GE:Collision) collision of
the edge unfolding from x0 along l1 with another already existing edge occurs on x0x1.

There are two possible sources of such collisions
– x0x1 meets an inward edge e′ along some l′ non-colinear with any of the marker lines

lj . Then the probability of the considered event is

(1 + o(1))σ M[dl′, x ′′;dl1, x0;dl2, x2; . . . ;dlk, xk]
with the prefactor (1+o(1)) due to the requirements that there be no directional updates
along x0x1 and that the inward edge e′ reaches x ′′, which are negligibly unlikely to fail
over the infinitesimal time interval [0, ds]. This expression corresponds to the second
term in (23) above.

– x0x1 meets an inward edge e′ along some marker line lj . In analogy to the case above,
here the probability of the considered event is

(1 + o(1))σ M[dlj , x
′′
j ;dl1, x0;dl2, x2; . . . ;dlk, xk].

This expression corresponds to the third term in (23) above.
• If x1 is not coupled with any other marker point xj then for (E:TurnOutwards) we have

P(E:TurnOutwards) = (1 + o(1))M(dl1)M([[x1x0]])σ M[dl2, x2; . . . ;dlk, xk]. (25)

Indeed, the probability of the vertex birth (GE:VertexBirth) at x ′ as required for
(E:TurnOutwards) is M(dl1)M(dl′), with the notation as in the above definition
of the event. Integrating over l′ ∈ [[x1x0]] yields M(dl1)M([[x1x0]]). Moreover, the
occurrence of such a (GE:VertexBirth) event at some dynamic construction time
in [1 − ds,1], as yielding an infinitesimally short outward edge e′, is overwhelm-
ingly unlikely to affect or be affected by the occurrence of E [dl2, x2; . . . ;dlk, xk]
for precisely the same reasons as those justifying (24) above. This nearly indepen-
dence allows us to express P(E:TurnOutwards) as the product of M(dl1)M(dl′) and
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σ M[dl2, x2; . . . ;dlk, xk] with the extra (1 + o(1)) coming also from the requirement that
there be no (GE:DirectionalUpdate) turns nor (GE:Collision) collisions along x ′x1.

Note that the above conclusions are valid regardless of whether some marker line lj ,
j �= 1, does cross x0x1 or not. Indeed, if such lj crosses x0x1 then the corresponding
marker point xj lies in the inward direction from the intersection point for otherwise an
(EM:DiscardOnCollision) event would occur in the (EM) dynamics, which we assumed
not to be the case. Thus, a possible outward turn in the direction of lj , j �= 1, occurring
along x0x1 cannot yield an edge reaching and affecting the status of xj and the occurrence
of E [dl2, x2; . . . ;dlk, xk].

• If x1 is coupled with some other marker point xj , j �= 1, along l1 = lj then for
(E:TurnOutwards) we have P(E:TurnOutwards) = 0 because the probability of obtain-
ing in (GE:VertexBirth) at x ′ an edge e1 exactly colinear with lj is zero since M � μ.

• If x1 is not coupled with any other marker point xj then for (E:TurnInwards) we have

P(E:TurnInwards) = (1 + o(1))M(dl1)

∫

l′∈[[x1x0]]
σ M[dl′, x ′′;dl2, x2; . . . ;dlk, xk].

(26)
Note that if some lj , j �= 1, crosses x0x1 then the integral in the RHS of (26) above
includes the singular term M(dl1)σ

M[dlj , x
′′
j ;dl2, x2; . . . ;dlj , xj ; . . . ;dlk, xk] corre-

sponding to the situation where l′ = lj . To establish (26) observe that the probability
of our edge e1 along l1 arising due to a (GE:DirectionalUpdate) directional update at
x ′ on an inward edge e′ along l′ and of having E [dl2, x2; . . . ;dlk, xk] at the same time,
is M(dl1) (directional update probability) times σ M[dl′, x ′′;dl2, x2; . . . ;dlk, xk] (proba-
bility of E [dl2, x2; . . . ;dlk, xk] holding and of having an edge e′ along l′ ending at x ′ and
thus passing through x ′′ modulo negligible measure set) times (1 + o(1)) to take into ac-
count the requirement that there be no further (GE:DirectionalUpdate) turns along x ′x1

which is satisfied with overwhelming probability. In analogy to our previous considera-
tions for (24), also here taking products of the above probabilities, modulo (1 + o(1)), is
well justified because the directional update at x ′ has only a negligible chance of affecting
the occurrence of E [dl2, x2; . . . ;dlk, xk]. Integrating over l′ yields now (26) as required.

• If x1 is coupled with some other marker point xj , j �= 1, along l1 = lj then for
(E:TurnInwards) we have P(E:TurnInwards) = 0 because the probability of obtain-
ing in (GE:DirectionalUpdate) at x ′ an edge e1 exactly colinear with lj is zero since
M � μ.

Putting now the above observations and formulae (21, 22, 23, 25, 26) together, using the def-
inition of the edge correlations (12) and recalling that x1 is in boundary position as assumed,
we see that, with the notation introduced in the above discussion

• If the marker (l1, x1) separates from (l̄, x̄) then

φ(l1, x1; l2, x2; . . . ; lk, xk) = φ(l2, x2; . . . ; lk, xk).

• If there is another marker point xi , i �= 1, say i = 2, in boundary position and with the
property that l1 and l2 meet in D1 \ D1−ds then

φ(l1, x1; l2, x2; l3, x3; . . . ; lk, xk) = (1 + o(1))φ(l3, x3; . . . ; lk, xk).

• Otherwise:
– If x1 is not coupled with any other marker point xj , j �= 1,
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σ M(dl1, x1; . . . ;dlk, xk) = (1 + o(1))

[

(1 − M([[x1x0]]))σ M[dl1, x0; . . . ;dlk, xk]

+ M(dl1)M([[x1x0]])σ M[dl2, x2; . . . ;dlk, xk]
+

∫

l′∈[[x1x0]]
[M(dl1)σ

M[dl′, x ′′;dl2, x2; . . . ;dlk, xk]

− σ M[dl′, x ′′;dl1, x0;dl2, x2; . . . ;dlk, xk]]
−

∑

j �=1, lj ∈[[x0x1]]
σ M[dlj , x

′′
j ;dl1, x0;dl2, x2; . . . ;dlk, xk]

]

whence, upon recalling the definition (13) of the edge correlation function φ(·),

φ(l1, x1; . . . ; lk, xk) = (1 + o(1))

[

(1 − M([[x1x0]]))φ(l1, x0; . . . ; lk, xk)

+ M([[x1x0]])φ(l2, x2; . . . ; lk, xk)

+
∫

l′∈[[x1x0]]
[φ(l′, x ′′; l2, x2; . . . ; lk, xk)

− φ(l′, x ′′; l1, x0; l2, x2; . . . ; lk, xk)]M(dl′)

+
∑

j �=1, lj ∈[[x0x1]]
[φ(lj , x

′′
j ; l2, x2; . . . ; lk, xk)

− φ(lj , x
′′
j ; l1, x0; l2, x2; . . . ; lk, xk)]

]

,

where the extra positive term in the last sum comes from separate treatment of the case
l′ = lj in (26), see the discussion directly following this display. This can be further
rewritten as

φ(l1, x1; . . . ; lk, xk) = (1 + o(1))

[

(1 − 2M([[x1x0]]))φ(l1, x0; . . . ; lk, xk)

+ M([[x1x0]])φ(l2, x2; . . . ; kk, xk)

+
∫

l′∈[[x1x0]]
[φ(l1, x0; . . .) + φ(l′, x ′′; l2, x2; . . .)

− φ(l′, x ′′; l1, x0; l2, x2; . . .)]M(dl′)

+
∑

j �=1, lj ∈[[x0x1]]
[φ(lj , x

′′
j ; l2, x2; . . . ; lk, xk)

− φ(lj , x
′′
j ; l1, x0; l2, x2; . . . ; lk, xk)]

]

. (27)

– Likewise, if x1 is coupled with some other marker point xj , j �= 1, then

φ(l1, x1; . . . ; lk, xk) = (1 + o(1))

[

(1 − M([[x1x0]]))φ(l1, x0; . . . ; lk, xk)

−
∫

l′∈[[x1x0]]
φ(l′, x ′′; l1, x0; l2, x2; . . . ; lk, xk)M(dl′)

−
∑

li∈[[x1x0]], li �=l1

φ(li , x
′′
i ; l1, x0; l2, x2; . . . ; lk, xk)

]

. (28)
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To complete the above discussion we recall that in the complementary case x1 �∈ ∂D1 the
point marker x1 would not evolve under the (EM) dynamics.

To proceed we combine (21, 22, 27, 28) and extend these relations for all the other
boundary marker points xi in (l̄, x̄). Recalling the evolution rules (EM) for the edge marker
process, taking into account that �0 = {(l̄, x̄)} and getting rid of the (1 + o(1)) prefactors as
ds → 0, we finally obtain the relation

�0 = φ(l̄, x̄) = E

∑

(l̄(p)(ds),x̄(p)(ds))∈�ds

η(p)(ds)φ(l̄(p)(ds), x̄(p)(ds)) = E�ds. (29)

Observe in this context that

• the second line in (27) corresponds to (EM:Kill) rule,
• the third line there to (EM:TurnAndBranch) rule,
• and the fourth line to (EM:ForcedTurnAndBranch).

Likewise, the absence of certain terms in the coupled version (28) of (27) corresponds to
annihilation of coupling-breaker configurations in (EM:UnbreakableCouplings). Clearly,
the crucial relation (29) admits straightforward extensions for more general initial conditions
and all time moments between 0 and 1, as discussed at the beginning of our proof. Thus,
(29) implies in particular that

�̃s :=
∑

(l̄(p)(s),x̄(p)(s))∈�s

φ(l̄(p)(s), x̄(p)(s)), s ∈ [0,1],

where all η(p) signs are converted into pluses, is a positive submartingale. Using Lemma 3
we see it is a uniformly integrable submartingale. Therefore, noting that |�s | ≤ �̃s, we con-
clude from (29) that (�s)s∈[0,1] is a martingale, which completes the proof of Lemma 4. �

Completing the Proof of Theorem 2 With Lemma 4 established, we are now in a position to
use the martingale representation combined with the relation (20) to complete the proof of
Theorem 2 as discussed next to the statement of Lemma 4 above. �

7 Proof of Lemma 1

Our proof is based on the so-called defective disagreement loop dynamics developed in
Sect. 6.4 of [16]. Since Lemma 1 is of a purely technical rather than conceptual nature and
the quite complicated defective diagreement loop dynamics finds no further applications in
this paper, we decided not to present its several pages long details here, referring the reader
to results of Sects. 6.4 and 7 in [16] instead. To proceed, with (l̄, x̄) = (l1, x1, . . . , lk, xk)

write

E [dl1, x1; . . . ;dlk, xk] := {∀k
i=1∃e∈Edges(A M) xi ∈ e, l[e] ∈ dli}

for the correlation-defining events. We claim that for (li , xi)
k
i=1 ∈ �g[k] in general position,

upon fixing l1, x1; . . . ; lk−1, xk−1, the function

(lk, xk) �→ P(E [dlk, xk]|E [dl1, x1; . . . ;dlk−1, xk−1])/M(dlk) (30)

is well defined, continuous and consequently locally bounded. Clearly, this will imply the
statement of Lemma 1 upon inductive application for (l̄, x̄) ∈ �g[k]. The existence and local
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boundedness for (l̄, x̄) ∈ �s[k] will then follow as well by noting that the edge correlation
for a singular configuration is bounded above by the sum of all corresponding one-sided
correlations and by repeating the existence and local boundedness argument given below
for the case of one-sided correlations, which is a straightforward repetition omitted here to
avoid unnecessary technicalities.

To establish our claim for (30) we use the defective disagreement loop dynamics of
Sect. 6.4 in [16] with directional updating principle induced by an arbitrary growing family
(Dt)t∈[0,1] as in (D1–4) satisfying in addition D0 = {x1} so that the anchor point A(l1) coin-
cides with x1. In analogy to the proof of Theorem 4 in [16], see also Theorem 10 there, the
conditional law of the polygonal field AM on the event E [dl1, x1; . . . ;dlk−1, xk−1] is invari-
ant with respect to the following reversible conditional version of the defective disagreement
loop dynamics, with s standing for the corresponding time parameter in which the dynamics
unfolds:

(Create) With intensity M(dlk)ds, on the event ¬E [dlk, xk] (that is to say if there is no
field edge along dlk containing xk) attempt to emit from xk a disagreement path with initial
creation phase directed along lk. Should the so generated path result in a configuration
violating E [dl1, x1; . . . ;dlk−1, xk−1], discard the update, otherwise accept it.

(Annihilate) With intensity ds, on the event E [dlk, xk] (that is to say if there is a field
edge along dlk containing xk) attempt to emit from xk a disagreement path with initial
annihilation phase directed along lk. Should the so generated path result in a configuration
violating E [dl1, x1; . . . ;dlk−1, xk−1], discard the update, otherwise accept it.

Note that there are no update failures arising due to cycle formation along disagreement
paths in this dynamics, because the chosen directional updating rule comes from a gener-
alised dynamic construction, see Sect. 6.4 in [16] for details. Denote now by πcreate the con-
ditional probability of a successful Create update attempt during time interval (s, s + ds)

on the event ¬E [dlk, xk]. Likewise, write πannihilate for the respective conditional probability
for Annihilate update on E [dlk, xk]. Clearly, by detailed balance for E [dlk, xk], we have

P(E [dlk, xk]|E [dl1, x1; . . . ;dlk−1, xk−1]) = (1 + o(1))πcreate/πannihilate. (31)

Note that πcreate ≤ M(dlk)ds, and that πannihilate ≥ cds for some c uniformly positive with
respect to small local displacements of xk and lk because there is some positive probabil-
ity that the disagreement path initiated by annihilating the edge at xk does not hit any xi ,
i < k, and thus does not lead to the violation of E [dl1, x1; . . . ;dlk−1, xk−1]. Consequently,
we conclude from (31) that the function in (30) is well defined and locally bounded on
�g[k]. Its required continuity follows also by (31) in view of the assumed continuity of the
activity measure density m = dM/dμ. We have thus established the desired properties of
the conditional correlation in (30) which completes the proof of the lemma. �
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